TAG: "Neuroscience"

Untangling brain circuits in mental illness


UCSF-UC Berkeley team leads $26M project, part of President Obama’s Brain Initiative.

Depression. Anxiety Disorders. Addiction.

They’re some of the most common conditions affecting people’s health, and for millions with the most severe cases, conventional treatments such as psychotherapy and medication don’t work adequately – or simply don’t work at all.

What if there were a treatment that could target the specific brain circuits that caused these conditions and offer patients a long-lasting solution?

A team of scientists and physicians led by UC San Francisco, in collaboration with UC Berkeley, is launching a $26 million project, funded by the Defense Advanced Research Projects Agency (DARPA), to map the human brain circuits that go awry in neuropsychiatric disorders and employ advanced technology to correct these patterns.

It’s one of the first projects launched in support of the $100 million Brain Initiative (Brain Research through Advancing Innovative Neurotechnologies), announced by President Barack Obama last year to support research on treating, preventing and perhaps curing brain disorders such as Alzheimer’s, schizophrenia, autism, epilepsy and traumatic brain injury. Because psychiatric conditions disproportionately affect soldiers and veterans, DARPA – a major partner in the Brain Initiative – is seeking the most original approaches to treatment-resistant mental illnesses.

“Human brain recording can now reveal aspects of mental illness that have been inaccessible to scientists and doctors,” said UCSF neurosurgeon Edward F. Chang, M.D., who is leading the project. “By analyzing patterns of interaction among brain regions known to be involved in mental illness we can get a more detailed look than ever before at what might be malfunctioning, and we can then develop technology to correct it.”

The technology itself already exists to help people with their motor skills.

For years, doctors have been doing deep brain stimulation to correct circuitry in movement disorders such as Parkinson’s disease.  And for patients who are paralyzed or are missing limbs, scientists at the Center for Neural Engineering and Prostheses (CNEP) – where Chang is co-director – have been working in the field of brain-machine interfaces to develop a tiny implantable device for the brain that can convert their thoughts into control commands for a robotic arm or exoskeleton.

This new project plans to leverage brain-machine interfaces to do the same for psychiatric patients – but instead of driving a robotic arm or exoskeleton, the device would be able to detect abnormal brain activity and deliver electrical stimulation within the brain to alleviate the symptoms.

And because of its natural plasticity, the brain eventually could “unlearn” these abnormal signaling patterns and the patient could potentially be cured.

The ambitious project will involve more than a dozen scientists, engineers and physicians at UC Berkeley, Lawrence Livermore National Laboratory, Cornell University and New York University, as well as industry partners Posit Science and Cortera Neurotechnologies.

Team members include Vikaas Sohal, M.D., Ph.D., assistant professor of psychiatry at UCSF; UCSF neurosurgeon Philip A. Starr, M.D., Ph.D.; José M. Carmena, Ph.D., CNEP co-director and UC Berkeley associate professor of electrical engineering and computer sciences and of neuroscience; and UC Berkeley colleagues Jonathan Wallis, Ph.D.,  and Robert Knight, M.D., professors of psychology and of neuroscience; Jan Rabaey, Ph.D., Elad Alon, Ph.D., and Michel Maharbiz, Ph.D., professor and associate professors, respectively, of electrical engineering and computer sciences; and Friedrich (Fritz) Sommer, Ph.D., adjunct associate professor at the Redwood Center for Theoretical Neuroscience.

Related links:

CATEGORY: NewsComments Off

UCSF 2.0: Creating new partnerships


Collaborations on brain diseases point to promising possibilities.

UC San Francisco's Adam Gazzaley and colleagues are reporting in the journal Nature that they have found a way to reverse some of the negative effects of aging on the brain, using a video game designed to improve cognitive control.

No single institution can address the next decade’s health, research and education challenges on its own. As players from a wide range of industries continue to venture into health and health care, it will be imperative for UC San Francisco to form new partnerships to address familiar health challenges in creative, novel ways.

UCSF has actively increased its portfolio of partnerships in the past few years, announcing several major projects this year alone.

Most recently, UCSF formed a new collaboration between the Institute for Neurodegenerative Diseases and the Japan-based global pharmaceutical company Daiichi Sankyo Co. Ltd. This joint venture, capitalizing on the Nobel Prize-winning research of Stanely Prusiner, M.D., is focusing on developing therapeutics and molecular diagnostics for multiple neurodegenerative diseases.

The collective feedback from faculty and staff who participated in the planning initiative known as UCSF 2.0 calls on the University to “amplify its network of collaborators.” One big idea is for UCSF to lead the creation of a Bio Silicon Valley, taking advantage of its close proximity to the Bay Area’s innovation milieu by bridging biological, social, and technological sciences to revolutionize biomedical research.

Making the right connections

Neuroscientist Adam Gazzaley, M.D., Ph.D., director of the UCSF Neuroscience Imaging Center and a faculty member since 2004, is among a group of innovators who are doing just that. He partnered with Swartz Center at UC San Diego and Nvidia, which makes high-end computational computer chips, to create a new imaging technology called GlassBrain. The technology allows him to view the brain without using a big imaging machine or wiring the patient to a computer with the ultimate aim to find treatments for a variety of brain diseases, including Alzheimer’s and multiple sclerosis.

Gazzaley, an associate professor of neurology, physiology and psychiatry, says UCSF can help faculty make the right connections with partners across sectors.

“We need to know what companies are looking for and how to align our goals,” he said. “We just have to point in same direction and appeal to their public interests. What I found in my experience doing this is that we have to demonstrate our value as a real partner and not just be a charity case.”

UCSF also can help by embracing the entrepreneurial spirit by providing opportunities for faculty and students to share ideas and tools.

“I want us to have a platform that enables us to be more creative and aggressive in thinking how software and hardware can be a new medicine to improve brain health,” Gazzaley said. “Often, high-tech innovations take a decade to move beyond the entertainment industry and reach science and medicine. That needs to change.”

Related links:

CATEGORY: NewsComments Off

Brain’s response to sexual images linked to number of sexual partners


UCLA researchers say finding could lead to strategies to reduce risky sex.

Nicole Prause, UCLA

Like most things, sex requires motivation. An attractive face, a pleasant fragrance, perhaps a sexy image. Yet people differ in their response to sex cues, some react strongly; some don’t. A greater responsiveness to sexual cues might provide greater motivation for a person to act sexually, and risky sexual behaviors typically occur when a person is motivated by particularly potent, sexual reward cues.

Now researchers at UCLA have, for the first time, directly linked brain responses  and real-world sexual behaviors. Specifically, the researchers found that how strongly the brain responded to viewing such images was related to the number of sex partners a person had in the previous year.

Led by Nicole Prause, a research scientist in the department of psychiatry in the UCLA Semel Institute for Neuroscience and Human Behavior, the study was published in the current online edition of the journal Social Cognitive and Affective Neuroscience. Prause and her colleagues used electroencephalogram (EEG) to measure a particular type of electrical activity in the brains of people as they were viewing a variety of images — some romantic, some pornographic, and some having nothing at all to do with sex.

Understanding how the brain responds to sexual images could help scientists create a brain stimulation intervention to reduce sensitivity to sexual reward and thus reduce some people’s proclivity to engage in risky sexual activities.

“These are the first data we know of that link brain responses to actual sexual risk behaviors,” said Prause, who directs the Sexual Psychophysiology and Affective Neuroscience Laboratory at UCLA. “If your brain responds very strongly even to very tame pictures of sex, then you seem to be easily sexually excited in the real world, too. If we show very explicit sex pictures, eventually everyone’s brain responds strongly. It is those weaker images, just hinting at sex, that show the difference.”

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

Better cognition seen with gene variant carried by 1 in 5 people


Finding could have implications for treating age-related diseases like Alzheimer’s.

A scientific team led by the Gladstone Institutes and UC San Francisco has discovered that a common form of a gene already associated with long life also improves learning and memory, a finding that could have implications for treating age-related diseases like Alzheimer’s.

The researchers found that people who carry a single copy of the KL-VS variant of the KLOTHO gene perform better on a wide variety of cognitive tests. When the researchers modeled the effects in mice, they found it strengthened the connections between neurons that make learning possible – what is known as synaptic plasticity – by increasing the action of a cell receptor critical to forming memories.

The discovery is a major step toward understanding how genes improve cognitive ability and could open a new route to treating diseases like Alzheimer’s. Researchers have long suspected that some people may be protected from the disease because of their greater cognitive capacity, or reserve. Since elevated levels of the klotho protein appear to improve cognition throughout the lifespan, raising klotho levels could build cognitive reserve as a bulwark against the disease.

“As the world’s population ages, cognitive frailty is our biggest biomedical challenge,” said Dena Dubal, M.D., Ph.D., assistant professor of neurology, the David A. Coulter Endowed Chair in Aging and Neurodegeneration at UCSF and lead author of the study, published today in Cell Reports. “If we can understand how to enhance brain function, it would have a huge impact on people’s lives.”

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

Blood-pressure drug prevents epilepsy after brain injury


Drug may forestall further brain damage caused by seizures in those with epilepsy.

Daniela Kaufer, UC Berkeley

Between 10 and 20 percent of all cases of epilepsy result from severe head injury, but a new drug promises to prevent post-traumatic seizures and may forestall further brain damage caused by seizures in those who already have epilepsy.

A team of researchers from UC Berkeley, Ben-Gurion University in Israel and Charité-University Medicine in Germany reports in the current issue of the journal Annals of Neurology that a commonly used hypertension drug prevents a majority of cases of post-traumatic epilepsy in a rodent model of the disease. If independent experiments now under way in rats confirm this finding, human clinical trials could start within a few years.

“This is the first-ever approach in which epilepsy development is stopped, as opposed to common drugs that try to prevent seizures once epilepsy develops,” said co-author Daniela Kaufer, UC Berkeley associate professor of integrative biology and a member of the Helen Wills Neuroscience Institute. “Those drugs have a very limited success and many side effects, so we are excited about the new approach.”

The team, led by Kaufer; neurosurgeon Alon Friedman, associate professor of physiology and neurobiology at the Ben-Gurion University of the Negev; and Uwe Heinemann of the Charite, provides the first explanation for how brain injury caused by a blow to the head, stroke or infection leads to epilepsy. Based on 10 years of collaborative research, their findings point a finger at the blood-brain barrier – the tight wall of cells lining the veins and arteries in the brain that is breached after trauma.

“This study for the first time offers a new mechanism and an existing, FDA-approved drug to potentially prevent epilepsy in patients after brain injuries or after they develop an abnormal blood-brain barrier,” Friedman said.

The drug, losartan (Cozaar), prevented seizures in 60 percent of the rats tested, when normally 100 percent of the rats develop seizures after injury. In the 40 percent of rats that did develop seizures, they averaged about one quarter the number of seizures typical for untreated rats. Another experiment showed that administration of losartan for three weeks at the time of injury was enough to prevent most cases of epilepsy in normal lab rats in the following months.

“This is a very exciting result, telling us that the drug worked to prevent the development of epilepsy and not by suppressing the symptoms,” Kaufer said.

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

Private partnerships for public benefit


Nobel laureate’s research into neurodegenerative diseases gets boost from Japanese firm.

Nobel laureate Stanley Prusiner (left), director of the UCSF Institute of Neurodegenerative Diseases, recently launched a partnership with pharmaceutical company Daiichi Sankyo that will accelerate his research into prion diseases. He credits the partnership largely to groundwork laid by IND’s associate director, David Ramsay (right).

Stanley Prusiner, M.D., is used to overcoming challenges in his career.

In 1982, as a UC San Francisco junior faculty member in the Department of Neurology, Prusiner published an article describing his discovery of an unprecedented class of pathogens that he named “prions.” These infectious proteins are now understood to be involved in numerous neurodegenerative diseases in humans and animals, including Alzheimer’s, Parkinson’s, frontotemporal dementia and Creutzfeldt-Jakob disease (CJD).

The article sparked a firestorm at the time.

Prusiner’s contention that a protein alone could be infectious flew in the face of the commonly held scientific belief that infections could only be transmitted by viruses, bacteria, fungi and parasites – all of which have genomes composed of either DNA or RNA. Proteins, however, are composed of amino acids.

Despite what he described as a “torrent of criticism” from the scientific community, the media and even funders of his research, Prusiner remained undeterred. He took comfort in the unwavering support of close colleagues, and mounting scientific evidence – much of it stemming his UCSF lab – that backed his claims.

The groundbreaking work led to Prusiner’s 1997 Nobel Prize in Physiology or Medicine.

“People often ask me why I persisted in doing research on a subject that was so controversial,” Prusiner said in his Nobel acceptance speech. “I frequently respond by telling them that only a few scientists are granted the great fortune to pursue topics that are so new and different that only a small number of people can grasp [their] meaning initially.”

In the decades since his discovery, Prusiner – now director of the Institute for Neurodegenerative Diseases (IND) at UCSF – has been committed to getting answers about prion diseases, and ultimately treatments and cures.

Even with a Nobel Prize under his belt, the road continues to pose challenges.

Federal funding from the National Institutes of Health (NIH) has been crucial to his research, but the recent recession – and resulting sequestration – highlighted the need to strengthen relationships with private industry. In 2013, the NIH awarded a total of $22.5 billion in funding to U.S. institutions, the lowest amount since 2003.

But this month, Prusiner’s work got a huge boost from an exciting new collaboration between the IND and the Japan-based global pharmaceutical company Daiichi Sankyo Co. Ltd. It will focus on developing therapeutics and molecular diagnostics for multiple neurodegenerative diseases.

“Alzheimer’s alone kills as many people every year as cancer does, but it only receives one-tenth of the funding that we dedicate to cancer research. This collaboration won’t fill that funding gap, but it will offer the tremendous value of Daiichi Sankyo’s scientific expertise to make progress on these diseases,” he said.

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

Progressive neurodegenerative disorder linked to R-loop formation


UC Davis findings suggest R-loops may be potential targets for drug development.

Paul Hagerman, UC Davis

Researchers at UC Davis have identified a new feature of the genetic mutation responsible for the progressive neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS) — the formation of “R-loops,” which they believe may be associated with the disorder’s neurological symptoms, such as tremors, lack of balance, features of Parkinsonism and cognitive decline.

The finding suggests that the R-loops may be potential targets for drug development, said Paul Hagerman, senior study author, professor in the Department of Biochemistry and Molecular Medicine and director of the UC Davis NeuroTherapeutics Research Institute. The study, “Transcription-associated R-loop Formation across the Human FMR1 CGG-repeat Region,” is published today in the online journal PLoS Genetics.

An R-loop is formed when the messenger RNA being made at the gene reinserts itself into the DNA helix, displacing one strand of DNA, which creates the “loop.” Such loops are known to be prone to damage, which can in turn lead to loss of cell function, particularly in neurons.

Hagerman and his collaborators discovered the R-loops while investigating mutations in the gene that causes FXTAS and other conditions associated with the fragile X mental retardation gene 1 (FMR1). R-loops are not unique to FXTAS and can occur in the promoter regions of many genes.

“But in FXTAS, the R-loops are more numerous and much longer than they are in FMR1 genes that are not mutated,” said Hagerman, a researcher who also is affiliated with the UC Davis MIND Institute.

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

UCSF launches online registry to drive brain disease research


Brain Health Registry brings promise of speeding advances.

A new online project led by researchers at UC San Francisco promises to dramatically cut the time and cost of conducting clinical trials for brain diseases, while also helping scientists analyze and track the brain functions of thousands of volunteers over time.

With easy online registration, the Brain Health Registry is designed to create a ready pool of research subjects for studies on neurological diseases, such as Alzheimer’s and Parkinson’s, as well as depression, post-traumatic stress disorder and many other brain ailments. About one third of the cost of running a clinical trial comes from having to recruit patients, and many trials fail or are delayed because of it.

Michael Weiner, UC San Francisco

The Brain Health Registry is the first neuroscience project to use the Internet on such a scale to advance clinical research, according to Michael Weiner, M.D., founder and principal investigator of the initiative and a professor of radiology, biomedical engineering, medicine, psychiatry and neurology at UCSF. One of his roles is serving as principal investigator of the Alzheimer’s Disease Neuroimaging Initiative, the largest observational study of Alzheimer’s.

“This registry is an innovative 21st century approach to science with tremendous potential,” Weiner said. “The greatest obstacles to finding a cure for Alzheimer’s and other brain disorders are the cost and time involved in clinical trials. This project aims to cut both and greatly accelerate the search for cures.”

Leading funders for the project include the Rosenberg Alzheimer’s Project, the Ray and Dagmar Dolby Family Fund and Kevin and Connie Shanahan. The initial focus will be on the San Francisco Bay Area, and the goal is to recruit 100,000 people by the end of 2017. Nearly 2,000 people already signed up during the online registry’s beta phase.

Volunteers will provide a brief personal history and take online neuropsychological tests in an online game format. The games give the Brain Health Registry scientific team a snapshot of the participant’s brain function. The data collected will help scientists study brains as they age, identify markers for diseases, develop better diagnostic tools to stop disease before it develops and increase the ready pool of pre-qualified clinical trial participants.

A select number of volunteers will be asked by researchers to do more, such as providing saliva or blood samples, or participating in clinical trials to test potential cures. Volunteers can participate as little or as much as they like. All information will be gathered in accordance with federal privacy laws under the Health Insurance Portability and Accountability Act (HIPAA), as well as the highest standards of medical ethics.

“For those of us who know people suffering from Parkinson’s, Alzheimer’s, PTSD and other brain disorders, this is a way we can be involved in the search for a cure,” said Douglas Rosenberg, of the Rosenberg Alzheimer’s Project, which is helping to fund the project. “We’ve worked to make the process very easy and very fulfilling for our volunteers.”

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments (1)

Daiichi Sankyo, UCSF announce collaboration in drug discovery research


They will focus on developing drugs and diagnostics for neurodegenerative diseases.

Daiichi Sankyo Co. Ltd. and UC San Franciscohave established a drug-discovery collaboration focused on developing novel therapeutics and molecular diagnostics for multiple neurodegenerative diseases.

Under the terms of the agreement, Daiichi Sankyo will provide its compound library to the UCSF Institute for Neurodegenerative Diseases (IND), and both parties will perform high-throughput compound screening and optimization together. The project will bring together the drug development capabilities of Daiichi Sankyo with the expertise of world-renowned neuroscientists at UCSF, in a collaborative effort to create multiple drug-discovery programs in debilitating disease areas such as Alzheimer’s, Parkinson’s, Creutzfeldt-Jakob disease and fronto-temporal dementias — all conditions for which there currently are no effective therapeutics available.

Daiichi Sankyo will provide research funding and milestone payments and royalties for successful clinical progression and commercialization of new products. Daiichi Sankyo will receive the option to enter into an exclusive license agreement to develop and commercialize promising compounds.

“This is a golden opportunity. These diseases require a big-picture approach, and that’s what Daiichi Sankyo is taking,” said Stanley Prusiner, M.D., who received the 1997 Nobel Prize in Physiology or Medicine for his discovery of prions, a new biological principle of infection. Prions are alternatively folded proteins that undergo replication — some prions perform critical cellular functions but others cause neurodegenerative diseases. Initially, Prusiner studied prions causing “mad cow” disease and Creutzfeldt-Jakob disease (CJD), but recently, he and many others have focused their work on other replicating, misfolded proteins— which Prusiner and others argue are prions—that are thought to cause the more common neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases.

“Alzheimer’s alone kills as many people every year as cancer does, but it only receives one-tenth of the funding that we dedicate to cancer research. This collaboration won’t fill that funding gap, but it will offer the tremendous value of Daiichi Sankyo’s scientific expertise to make progress on these diseases,” said Prusiner, UCSF professor of neurology and director of the IND.

“Daiichi Sankyo is committed to identifying potential new therapies to help fuel our passion to find medicines for the patients who need them. Using the compound screening technology at UCSF, along with their expertise in prion research, will give us an opportunity to explore the potential.  I am excited about this collaboration and look forward to seeing results of this partnership.” said Glenn Gormley, M.D., Ph.D., senior executive officer and global head of research and development, Daiichi Sankyo Co. Ltd.

Founded in 1999, the UCSF IND is one of the top academic laboratories focused on discovering causes and developing cures for neurodegenerative diseases. As the leader of the IND, which is based at UCSF and includes neuroscience research at several other UC campuses, Prusiner is committed to creating therapeutics and diagnostics that will halt neuronal diseases with his experience in prion research.

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

New test makes Parkinson’s-like disorder detectable in young adults


Brain abnormalities may begin to develop two decades before symptoms might occur.

UC Davis MIND Institute

The very earliest signs of a debilitating neurodegenerative disorder, in which physical symptoms are not apparent until the fifth decade of life, are detectable in individuals as young as 30 years old using a new, sophisticated type of neuroimaging, researchers at UC Davis, the University of Illinois and UCLA have found.

People with the condition — fragile X-associated tremor/ataxia syndrome (FXTAS) — experience tremors, poor balance, cognitive impairments and Parkinsonism. The genetic condition results from a mutation in the fragile X mental retardation gene (FMR1). FXTAS develops in about 40 percent of male and 15 percent of female carriers of the mutated FMR1 gene.

“Our findings suggest that the brain abnormalities of FXTAS may begin to develop about two decades before symptoms might occur,” said Tony J. Simon, study senior author and professor, Department of Psychiatry and Behavioral Sciences.

“Altered Structural Brain Connectome in Young Adult Fragile X Premutation Carriers,” is published in Human Brain Mapping.

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

New dean is biological sciences booster


Frank LaFerla, renowned for his Alzheimer’s work, hopes to raise UC Irvine school’s profile.

Frank LaFerla, UC Irvine

For a scientist widely considered an international leader in Alzheimer’s disease research, Frank LaFerla joined the UC Irvine faculty in 1995, interestingly enough, without ever having taken a single neuroscience class.

LaFerla had received a doctorate in virology and was studying AIDS-related dementia when he sat in on his first neurobiology course, one taught by James McGaugh and Norman Weinberger, two of the nation’s top learning and memory researchers. The lessons obviously made a great impression on the young scientist.

Since that time, LaFerla has made key research breakthroughs that show promise for treating Alzheimer’s and other neurodegenerative diseases. He has served in numerous leadership roles, including as chair of the Department of Neurobiology & Memory and director of the campus’s Institute for Memory Impairments and Neurological Disorders (UCI MIND), a research center internationally acclaimed for its work on disorders of the brain, particularly those that are age-related.

Last December, LaFerla became the Hana & Francisco J. Ayala Dean of the newly renamed Francisco J. Ayala School of Biological Sciences, heading the third-largest school on campus, with nearly 4,000 students majoring in one of its four undergraduate degree programs.

“Frank brings enormous enthusiasm and optimism to everything he does,” says McGaugh, a research professor of neurobiology & behavior and former biological sciences dean. “He wants to take actions that emphasize the character and the contributions of the school to the campus and to the public. It’s hard to imagine a more qualified person for the position.”

And with UC Irvine approaching its golden anniversary, LaFerla says, he aims to “take the school to the next level.”

He assumes the helm at a time when the biological sciences are critical to addressing such global concerns as sustainable food production, ecosystem restoration, optimized biofuel manufacturing and improved human health. And he wants to ensure that UC Irvine plays a part.

“Our brand is ‘Understanding Life: Transforming Our World,’” LaFerla says. “We will be excellent ambassadors of science who are trying to solve very important issues.”

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off

Brain differences found in college-aged occasional drug users


UC San Diego findings point to potential biomarkers for early detection of at-risk youth.

Martin Paulus, UC San Diego

Researchers at the UC  San Diego School of Medicine have discovered impaired neuronal activity in the parts of the brain associated with anticipatory functioning among occasional 18- to 24-year-old users of stimulant drugs, such as cocaine, amphetamines and prescription drugs such as Adderall.

The brain differences, detected using functional magnetic resonance imaging (fMRI), are believed to represent an internal hard wiring that may make some people more prone to drug addiction later in life.

Among the study’s main implications is the possibility of being able to use brain activity patterns as a means of identifying at-risk youth long before they have any obvious outward signs of addictive behaviors.

The study is published in the March 26 issue of the Journal of Neuroscience.

“If you show me 100 college students and tell me which ones have taken stimulants a dozen times, I can tell you those students’ brains are different,” said Martin Paulus, M.D., professor of psychiatry and a co-senior author with Angela Yu, Ph.D., professor of cognitive science at UC San Diego. “Our study is telling us, it’s not ‘this is your brain on drugs,’ it’s ‘this is the brain that does drugs.’”

Read more

For more health news, visit UC Health, subscribe by email or follow us on Flipboard.

CATEGORY: NewsComments Off