CATEGORY: News

Parkinson’s disease brain rhythms detected

UCSF finding suggests better way to monitor, treat disease with deep brain stimulation.

This CT image taken during surgery was superimposed on a preoperative MRI of one patient's brain. It shows a strip of detectors (red dots) used to record cortical activity and a deep-brain stimulation electrode (green cylinder with yellow tip). The multicolor traces represent the fibers connecting the two.

A team of scientists and clinicians at UC San Francisco has discovered how to detect abnormal brain rhythms associated with Parkinson’s by implanting electrodes within the brains of people with the disease.

The work may lead to developing the next generation of brain stimulation devices to alleviate symptoms for people with the disease.

Described this week in the journal Proceedings of the National Academy of Sciences (PNAS), the work sheds light on how Parkinson’s disease affects the brain, and is the first time anyone has been able to measure a quantitative signal from the disease within the cerebral cortex – the outermost layers of the brain that helps govern memory, physical movement and consciousness.

“Normally the individual cells of the brain are functioning independently much of the time, working together only for specific tasks,” said neurosurgeon Philip Starr, M.D., Ph.D., a professor of neurological surgery at UCSF and senior author of the paper. But in Parkinson’s disease, he said, many brain cells display “excessive synchronization,” firing together inappropriately most of the time.

“They are locked into playing the same note as everyone else without exploring their own music,” Starr explained. This excessive synchronization leads to movement problems and other symptoms characteristic of the disease.

The new work also shows how deep brain stimulation (DBS), which electrifies regions deeper in the brain, below the cortex, can affect the cortex, itself. This discovery may change how DBS is used to treat Parkinson’s and other neurologically based movement disorders, and it may help refine the technique for other types of treatment.

Over the last decade, doctors at UCSF and elsewhere have turned to deep brain stimulation to help people with Parkinson’s disease and movement disorders like essential tremor and primary dystonia, an extremely debilitating condition that causes painful, twisting muscle spasms.

In addition, deep brain stimulation is now being explored to treat psychiatric diseases like depression and obsessive-compulsive disorder. Last year, a team at UCLA showed that electrical stimulation of the temporal lobe in patients during learning activities helped them recall specific types of spatial information.

Read more

Comments are closed.